Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 46(4): 327-338, 05/abr. 2013.
Article in English | LILACS | ID: lil-671387

ABSTRACT

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.


Subject(s)
Animals , Humans , Body Fluids/physiology , Homeostasis/physiology , Neural Pathways/physiology , Neurosecretion/physiology , Neurotransmitter Agents/physiology , Signal Transduction/physiology , Brain Mapping , Osmolar Concentration
2.
Braz. j. med. biol. res ; 42(1): 61-67, Jan. 2009. ilus
Article in English | LILACS | ID: lil-505419

ABSTRACT

The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor κB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.


Subject(s)
Animals , Humans , Glucocorticoids/physiology , Homeostasis/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Plasma Volume/physiology , Body Fluids/physiology , Hypothalamo-Hypophyseal System , Natriuretic Peptides/blood , Natriuretic Peptides , Oxytocin/blood , Oxytocin , Pituitary-Adrenal System , Vasopressins/blood , Vasopressins
SELECTION OF CITATIONS
SEARCH DETAIL